Tetrahedron Letters No.33, pp. 3631-3634, 1968. Pergamon Press. Printed in Great Britain.

STUDIES OF ACENAPHTHENE DERIVATIVES. XVIII.⁽¹⁾ THE NOVEL REACTION OF BENZYLIDENEACENAPHTHENONES WITH GRIGNARD REAGENTS

Otohiko Tsuge, Ichiro Shinkai and Masashi Tashiro Research Institute of Industrial Science, Kyushu University Hakozaki, Fukuoka, Japan

(Received in Japan 30 April 1968; received in UK for publication 17 May 1968)

The addition of Grignard reagents to α,β -unsaturated carbonyl compounds has been the subject of many investigations. Kohler et al.⁽²⁾ have reported that ethyl cinnamate gives exclusively the 1,2-addition product with methylmagnesium iodide, but predominantly the 1,4-adduct with phenylmagnesium bromide. It is also known that chalcone reacted with phenylmagnesium bromide to give di-addition product, accompanying with the 1,4-adduct.⁽³⁾

In this communication we wish to report the novel reaction of benzylideneacenaphthenones (I) with Grignard reagents.

When Ia (R=H) was treated with phenylmagnesium bromide (IIa) in ethyl ether-benzene, white needles (IIIa), m.p. 184-185°, and yellow needles (IVa), m.p. 103-104°, were obtained in yields of 31 and 29% respectively. The compound IIIa was confirmed to be the expected 1,4-adduct, 2-benzhydrylacenaphthenone, on the basis of the following evidences. The compound IIIa was in agreement with the formula $C_{25}H_{18}O$ and its mass spectrum showed the parent peak at m/e 334. The IR spectrum exhibited the band at 1718 cm⁻⁷ and NMR spectrum in CDCl₃ showed peaks at γ 5.0, 4.6 (each 1H, doublet, J=6 cps) and 2.5 (16H, multiplet).

On the other hand, the molecular formula of IVa did not agree with an l:1adduct, but it agreed with $C_{27}H_{22}O$. The mass spectrum of IVa showed the parent

3631

peak at m/e 362 and IR spectrum exhibited the band assignable to ether group at 1070 cm⁻⁷, but there was no absorption due to a hydroxyl or carbonyl group.

As illustrated in Fig. 1, the NMR spectrum of IVa in $CDCl_3$ exhibits peaks at \mathcal{T} 8.75 (3H, triplet), 6.24, 6.17 (2H, double quartet, J=4 cps), 3.85 (1H, singlet) and 2.5 (16H, multiplet).

Fig. 1 The NMR spectrum of IVa in CDCl₃

The above observations can be explained on the assumption that IVa is 1ethoxy-2-benzhydrylacenaphthylene; hence, ethyl ether used as a solvent appears to be involved in the reaction. This structure was also confirmed by the following results. The treatment of IVa with hydriodic acid afforded 1-benzhydrylacenaphthylene (V), $C_{25}H_{18}$, m.p. 49-50°, yellow grains, in 80% yield, accompanying with a trace amount of IIIa.

When IIIa was reduced with NaBH, in ethanol at room temperature, 2-benzhydrylacenaphthenol (VI), m.p. 190-192°, white needles which, when treated with 35% sulfuric acid at 70°, suffered dehydration to V, was obtained in 89% yield.

The structures for V and VI were confirmed by elemental analyses, IR, NMR and mass spectra respectively.

Similar reactions of IIa with <u>p</u>-substituted phenylmagnesium bromides (IIb-IId) afforded the corresponding compounds III and IV respectively (Scheme 1). The yields, physical properties and elemental analyses of III and IV are summarized in Table I.

Scheme 1

Interestingly, the reaction of Ia with IIa in <u>isopropyl</u> ether-benzene gave IIIa in 43% yield, accompanying with a trace amount of l-<u>isopropoxy-2-benz-</u> hydrylacenaphthylene, m.p. 113°, yellow needles.

	R'	Yield	M.p.	IR, cm ^{-/}		Found, %		Calc, %	
		%	٥C	C=0	-C-O-C-	C	H	C	Ħ
IIIa	H	31	184-185	1718		89.56	5.35	89.79	5.43
IVa	H	29	103-104		1070	89.66	6.13	89.47	6.12
IIIb	Me	15	153-154	1715		89.29	5.93	89.62	5.79
IVB	Me	20	103-104		1075	89.44	6.50	89.32	6.43
IIIc	OMe	15	225 - 226	1710		85.71	5.61	85.69	5.53
IVc	OMe	47	142-143		1070	85.80	6.24	85.68	6.16
IIId	Cl	6	140 - 142	1715		81.64	4.67	81.50	4.62
IVd	Cl	23	101-102		1080	81.81	5.43	81.75	5.30

TABLE I

III: white needles, IV: yellow needles.

In the reactions of Ib (R=Me) and Ic (R=Cl) with IIa, IIb and IId under similar conditions, the corresponding 1,4-adducts were only obtained, accompanying with a large amount of resincus material respectively. On the other hand, Ic reacted with IIc to give the di-addition product (VII), $C_{33}H_{25}O_2Cl$ (M⁺=448), m.p. 72-73°, in 33% yield. The IR spectrum of VII did not reveal any bands for the carbonyl or hydroxyl group, and NMR spectrum in CDCl₃ exhibited peaks at τ 5.93 (6H, singlet), 3.34 (1H, singlet) and 2.5 (18H, multiplet).

The reactions of Ia and Ic with benzylmagnesium bromide gave the corresponding bis-benzylideneacenaphthenes VIIIa (R=H) and VIIIc (R=Cl) in yields of 47 and 29% respectively.

VIIIa: C₂₆H₁₈ (M⁺=330), m.p. 177-178°. VIIIc: C₂₆H₁₇Cl (M⁺=364), m.p. 171°.

The reaction courses are uncertain as yet. Further studies are in progress and the results will be reported shortly.

REFERENCES

(1) Part XVII: O. Tsuge, I. Shinkai and M. Tashiro, <u>Bull. Chem. Soc. Japan</u>, in press.

(2) E. P. Kohler and G. Heritage, Am. Chem. J., 31, 642 (1903).

(3) R. C. Fuson, T. San and J. Diekmann, <u>J. Org. Chem.</u>, <u>27</u>, 1221 (1962).

3634